Disclosures

Nothing to disclose

Placenta Accreta Spectrum

- US findings in First Trimester
- US findings in Second & Third Trimesters
- Recent Literature - controversy
- Optimizing your US Diagnosis
- Management
Why are we Concerned?

- Rising incidence: 1/2500 to 1/533 pregnancies
- 40-60% of cases are diagnosed intrapartum with little preoperative planning
- 71% of placenta accreta cases require a hysterectomy
- 25% of patients with placenta accreta lose >5 liters of blood
- Mortality rate of cesarean hysterectomy 1.6% but as high as 10% with placenta percreta

Terminology

- Placenta accreta: 75%
- Placenta increta: 18%
- Placenta percreta: 7%

Risk Factors

<table>
<thead>
<tr>
<th>TABLE 8.5</th>
<th>Risk Factors for Placenta-Accreta</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Placenta previa and prior cesarean section</td>
<td></td>
</tr>
<tr>
<td>- Advanced maternal age</td>
<td></td>
</tr>
<tr>
<td>- Multiparity</td>
<td></td>
</tr>
<tr>
<td>- Prior uterine surgery</td>
<td></td>
</tr>
<tr>
<td>- Prior uterine irradiation</td>
<td></td>
</tr>
<tr>
<td>- Endometrial ablation</td>
<td></td>
</tr>
<tr>
<td>- Asherman’s syndrome</td>
<td></td>
</tr>
<tr>
<td>- Leiomyomas</td>
<td></td>
</tr>
<tr>
<td>- Uterine anomalies</td>
<td></td>
</tr>
<tr>
<td>- Hypertensive disorders in pregnancy</td>
<td></td>
</tr>
<tr>
<td>- Smoking</td>
<td></td>
</tr>
</tbody>
</table>
Risk Factors

Cesarean Section/Placenta Previa

Sonographic Findings

First Trimester
Adapted the European Consensus Group Classification

SMFM Task Force

- SMFM
- ACOG
- AIUM
- ISUOG
- ACR
- SRU
- ARDMS

Boston, December 2018

First Trimester

Location of Gestational Sac

- Low Implantation Pregnancy - a gestational sac located in the lower uterus in proximity to the internal cervical os
- Cesarean Scar Pregnancy - gestational sac implantation in part or totally within the cesarean section scar - Gestational sac may have tear drop or triangular shape

Boston, December 2018
First Trimester Lower Uterine Segment Implantation

- Data base of 90,435 births
- Placenta accreta in 20
- First trimester scan in 7/20
- Sac in lower segment in 6/7

J of Ultrasound in Med 2003;22:19
Cesarean Scar Pregnancy

• 58 cases for histologic review (37 CSP and 21 EAP)
• 2 pathologists reviewed slides
• Looking for myometrial invasion w/o intervening decidua
• Identical histopathological features (kappa = 0.93)

Cesarean Scar Pregnancy
Minimally Invasive Treatment of Cesarean Scar and Cervical Pregnancies Using a Cervical Ripening Double Balloon Catheter

Expanding the Clinical Series

Journal Ultrasound Medicine, August 2018

<table>
<thead>
<tr>
<th>GA (wks)</th>
<th>Patients</th>
<th>Mean ACG (Proportion)</th>
<th>Mean Days Balloon in Place</th>
<th>Mean Days to Negative ACG</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-11 wks</td>
<td>7</td>
<td>66.8</td>
<td>11</td>
<td>53</td>
</tr>
<tr>
<td>11-16 wks</td>
<td>8</td>
<td>16.8</td>
<td>11</td>
<td>53</td>
</tr>
<tr>
<td>16-18 weks</td>
<td>2</td>
<td>38.0</td>
<td>1.6</td>
<td>49</td>
</tr>
<tr>
<td>18-20 weks</td>
<td>1</td>
<td>77.0</td>
<td>1.4</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 3. Summary of Outcome.
Multiple vascular lacunae within placenta
Sonographic Findings

Multiple vascular lacunae within placenta (# Lacunae)

Table 2 Distribution of adherent placenta according to lacunar grade

<table>
<thead>
<tr>
<th>Adherent placenta</th>
<th>Grade 0</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>22</td>
<td>6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lacunae</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Placenta</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>10</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>

G 0 = 0 lacunae
G 1 = 1-3 lacunae
G 2 = 4-6 lacunae
G 3 = > 6 lacunae

Multiple vascular lacunae within placenta

Personal Observation

Multiple vascular lacunae have very high predictive power in association with a placenta previa
Multiple vascular lacunae within placenta

Pathogenesis of Placental Lacunae
Placental tissue alterations resulting from long-term exposure to pulsatile blood flow

Lacunae – Blood Flow
Lacunae – Blood Flow

Gray Scale & Color

Lacunae – Blood Flow

Gray Scale

Lacunae – Blood Flow

Color Doppler
Lacunae in Placenta Accreta Spectrum

<table>
<thead>
<tr>
<th>Study</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cak et al.</td>
<td>78</td>
<td>86</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Connock et al.</td>
<td>93</td>
<td>93</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Wung et al.</td>
<td>100</td>
<td>96</td>
<td>95</td>
<td>75</td>
</tr>
<tr>
<td>Yang et al.</td>
<td>100</td>
<td>96</td>
<td>95</td>
<td>75</td>
</tr>
</tbody>
</table>

Gr 1 = grade 1 (zone to three lacunae), Gr 2 = grade 2 (four to six lacunae)

SMFM Task Force

Abnormal Uteroplacental Interface

- Partial or complete loss of the retroplacental hypoechoic zone between the placenta and myometrium*
- This marker is often located along the posterior bladder wall resulting in partial or complete interruption or irregularities of uterovesical interface
- Thinning of the retroplacental myometrium (previously described as the myometrium thickness of <1mm)

*The space represents the uterine decidua and has been described as the "clear zone."

Normal hypoechoic retroplacental zone
Normal hypoechoic retroplacental zone

Loss of hypoechoic retroplacental zone

Loss of hypoechoic retroplacental zone
Loss of hypoechoic retroplacental zone

Table 1. Utility of the clear space in diagnosis of PTA

<table>
<thead>
<tr>
<th>Author</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crymko et al 24, 25</td>
<td>73</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wong et al 26</td>
<td>100</td>
<td>35</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cali et al 28</td>
<td>90.2</td>
<td>80.8</td>
<td>57</td>
<td>96.7</td>
</tr>
</tbody>
</table>

• False positive rate of 21% or higher
• Should not be used alone
• Angle dependent, can be absent in normal anterior placentas

What defines an accreta

Abnormality of the uterine serosa-bladder interface

- Interruption of line
- Thickening of line
- Irregularity of line
- Increased vascularity on color Doppler
Table 2. Utility of interrupted bladder line in the diagnosis of PAD

<table>
<thead>
<tr>
<th>Study</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gal et al. 69</td>
<td>70</td>
<td>99</td>
<td>96</td>
<td>92</td>
</tr>
<tr>
<td>Constock et al. 66</td>
<td>20</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wong et al. 67</td>
<td>11</td>
<td>70</td>
<td>100</td>
<td>88</td>
</tr>
</tbody>
</table>
New Marker: Placental Thickness

Placental Thickness
How about Color Doppler & PAS?

- Striking color Doppler
- Bridging vessels
- Increased retroplacental flow
How Accurate are PAS Ultrasound Markers when Evaluated in a Blinded Fashion?

- 55 patients with accreta and 56 controls (previa)
- De-identified US studies
- Reviewed by 6 investigators, blinded to Dx

IMAGING
Accuracy of ultrasound for the prediction of placenta accreta

- Placental lacunae (OR 1.4 – 95% CI, 1.3-1.6)
- Loss of retroplacental space (OR 2.2 – 95% CI, 1.6-3.0)
- Irregular bladder wall (OR 1.3 – 95% CI, 1.0-1.6)
- Color Doppler abnormalities (OR 1.3 – 95% CI, 1.1-1.4)
Why Such Disparity?

• Lack of standardization of definitions
• FIGO-SMFM
• Need for optimization of ultrasound examination
• SMFM
• Need for more prospective studies to understand the independent value of each marker

How Common are PAS Ultrasound Markers in Low-Risk Pregnancies?

Prospective, longitudinal cohort study
May 2016 - February 2017

Study Population
- History of prior c-section
- Second trimester scan (18-24 wks)
- Third trimester scan (28-34 wks)

Inclusion criteria:
> 18 years of age, singleton gestation presenting before gestational age of 24w, no known fetal anomalies or genetic conditions

Prevalence of Sonographic Markers of Placenta Accreta Spectrum in Low-Risk Pregnancies

Rochelle Philips, MD1 - Nargel Cangiano, MPH1 - Sarah DeRoche, MPH1 - Tina Cunningham, MPH2 - Lara Melnikova, MD, PhD3 - Caroline Kuzmar, MA1 - Luis Peralta, MD1 - Ahmad Abulafia, MD1

American Journal of Perinatology - Dec 2018
Prevalence of Sonographic Markers of Placenta Accreta Spectrum in Low-Risk Pregnanacies

Jennifer Phillips, MD; Megan Cargan, MPH; Sarah DeShields, MPH; Camille Kanesa, MD; Lee Porcher, MD; Ali Al-Mohammad, MD

Table 3: Retropelvic sonographic findings in the study population and in pregnancies with and without cesarean section.

<table>
<thead>
<tr>
<th>Second trimester</th>
<th>Total sample</th>
<th>With prior CD</th>
<th>Without prior CD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retropelvic myometrial thickness (mm), median (IQR)</td>
<td>5.5 (3.2)</td>
<td>5.0 (3.1)</td>
<td>5.4 (3.2)</td>
<td>0.08*</td>
</tr>
<tr>
<td>Retropelvic myometrial thickness < 4 mm</td>
<td>0.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.05</td>
</tr>
<tr>
<td>ECL score < 1</td>
<td>14 (8.1)</td>
<td>12 (7.3)</td>
<td>15 (8.0)</td>
<td>0.06</td>
</tr>
<tr>
<td>Presence of subplacental myometrial vessels</td>
<td>62 (37.2)</td>
<td>12 (41.3)</td>
<td>57 (30.8)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Percent of patients:

- Total number of patients
- Second trimester assessment
- Third trimester assessment

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2 or more</th>
<th>2 or more</th>
<th>2 or more</th>
<th>2 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 or more</td>
<td>94.5%</td>
<td>75.0%</td>
<td>82.5%</td>
<td>95.0%</td>
</tr>
<tr>
<td>4 or more</td>
<td>24.1%</td>
<td>33.3%</td>
<td>24.1%</td>
<td>24.1%</td>
</tr>
<tr>
<td>Childbirth</td>
<td>2 or more</td>
<td>94.1%</td>
<td>75.3%</td>
<td>82.5%</td>
</tr>
<tr>
<td>4 or more</td>
<td>24.1%</td>
<td>33.3%</td>
<td>24.1%</td>
<td>24.1%</td>
</tr>
</tbody>
</table>

Prevalence of Sonographic Markers of Placenta Accreta Spectrum in Low-Risk Pregnanacies

Jennifer Phillips, MD; Megan Cargan, MPH; Sarah DeShields, MPH; Camille Kanesa, MD; Lee Porcher, MD; Ali Al-Mohammad, MD

Table 3: Retropelvic sonographic findings in the study population and in pregnancies with and without cesarean section.

<table>
<thead>
<tr>
<th>Second trimester</th>
<th>Total sample</th>
<th>With prior CD</th>
<th>Without prior CD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retropelvic myometrial thickness (mm), median (IQR)</td>
<td>5.5 (3.2)</td>
<td>5.0 (3.1)</td>
<td>5.4 (3.2)</td>
<td>0.08*</td>
</tr>
<tr>
<td>Retropelvic myometrial thickness < 4 mm</td>
<td>0.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.05</td>
</tr>
<tr>
<td>ECL score < 1</td>
<td>14 (8.1)</td>
<td>12 (7.3)</td>
<td>15 (8.0)</td>
<td>0.06</td>
</tr>
<tr>
<td>Presence of subplacental myometrial vessels</td>
<td>62 (37.2)</td>
<td>12 (41.3)</td>
<td>57 (30.8)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Percent of patients:

- Total number of patients
- Second trimester assessment
- Third trimester assessment

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2 or more</th>
<th>2 or more</th>
<th>2 or more</th>
<th>2 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 or more</td>
<td>94.5%</td>
<td>75.0%</td>
<td>82.5%</td>
<td>95.0%</td>
</tr>
<tr>
<td>4 or more</td>
<td>24.1%</td>
<td>33.3%</td>
<td>24.1%</td>
<td>24.1%</td>
</tr>
<tr>
<td>Childbirth</td>
<td>2 or more</td>
<td>94.1%</td>
<td>75.3%</td>
<td>82.5%</td>
</tr>
<tr>
<td>4 or more</td>
<td>24.1%</td>
<td>33.3%</td>
<td>24.1%</td>
<td>24.1%</td>
</tr>
</tbody>
</table>

Prevalence of Sonographic Markers of Placenta Accreta Spectrum in Low-Risk Pregnanacies

Jennifer Phillips, MD; Megan Cargan, MPH; Sarah DeShields, MPH; Camille Kanesa, MD; Lee Porcher, MD; Ali Al-Mohammad, MD

Table 3: Retropelvic sonographic findings in the study population and in pregnancies with and without cesarean section.

<table>
<thead>
<tr>
<th>Second trimester</th>
<th>Total sample</th>
<th>With prior CD</th>
<th>Without prior CD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retropelvic myometrial thickness (mm), median (IQR)</td>
<td>5.5 (3.2)</td>
<td>5.0 (3.1)</td>
<td>5.4 (3.2)</td>
<td>0.08*</td>
</tr>
<tr>
<td>Retropelvic myometrial thickness < 4 mm</td>
<td>0.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.05</td>
</tr>
<tr>
<td>ECL score < 1</td>
<td>14 (8.1)</td>
<td>12 (7.3)</td>
<td>15 (8.0)</td>
<td>0.06</td>
</tr>
<tr>
<td>Presence of subplacental myometrial vessels</td>
<td>62 (37.2)</td>
<td>12 (41.3)</td>
<td>57 (30.8)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Percent of patients:

- Total number of patients
- Second trimester assessment
- Third trimester assessment

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>2 or more</th>
<th>2 or more</th>
<th>2 or more</th>
<th>2 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 or more</td>
<td>94.5%</td>
<td>75.0%</td>
<td>82.5%</td>
<td>95.0%</td>
</tr>
<tr>
<td>4 or more</td>
<td>24.1%</td>
<td>33.3%</td>
<td>24.1%</td>
<td>24.1%</td>
</tr>
<tr>
<td>Childbirth</td>
<td>2 or more</td>
<td>94.1%</td>
<td>75.3%</td>
<td>82.5%</td>
</tr>
<tr>
<td>4 or more</td>
<td>24.1%</td>
<td>33.3%</td>
<td>24.1%</td>
<td>24.1%</td>
</tr>
</tbody>
</table>
Understand Relevance of a-Priori Risk

• Always use the transvaginal approach
• Evaluate placenta in real time & Magnify
• Always add color Doppler in low velocity
• Carefully assess the lower segment /cervical area (look for cervical invasion)
• Develop a protocol
• Stratify risk for bleeding (High-Intermediate-Low)

High Risk for Bleeding
Low Risk for Bleeding

Intermediate Risk for Bleeding

Placenta Accreta Spectrum: Optimizing the Outcome
Complications of PAS

- Damage to local organs
- Postoperative bleeding
- Amniotic fluid embolism
- Consumptive coagulopathy
- Transfusion-related complications
- Acute respiratory distress syndrome
- Postoperative thromboembolism
- Infectious morbidities
- Multi-system organ failure
- Maternal death

Complications of Cesarean Hysterectomy (NICHD 2009)

<table>
<thead>
<tr>
<th>Complication</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRBC</td>
<td>156</td>
<td>83.9</td>
</tr>
<tr>
<td>FFP</td>
<td>59</td>
<td>31.7</td>
</tr>
<tr>
<td>Cryoprecipitate</td>
<td>22</td>
<td>11.8</td>
</tr>
<tr>
<td>Platelets</td>
<td>26</td>
<td>15.1</td>
</tr>
<tr>
<td>Post op fever</td>
<td>21</td>
<td>13.3</td>
</tr>
<tr>
<td>Beas</td>
<td>10</td>
<td>5.4</td>
</tr>
<tr>
<td>Exlap</td>
<td>7</td>
<td>3.8</td>
</tr>
<tr>
<td>Maternal death</td>
<td>3</td>
<td>1.6</td>
</tr>
<tr>
<td>Bowel injury</td>
<td>2</td>
<td>1.1</td>
</tr>
<tr>
<td>DVT</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Uteral injury</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Cystotomy</td>
<td>18</td>
<td>10</td>
</tr>
</tbody>
</table>

Steps to Optimize Outcome in PAS
1- Improve your Antenatal Diagnosis

- Learn of PAS sonographic markers
- Review European, FIGO & SMFM standardization
- Understand limitations
- Common in low-risk population
- Standardize approach to ultrasound (Protocol)

2- Standardize your Antenatal Preparation

- Create a protocol and a check list
- Provide patient counseling
- Perform follow-up ultrasounds
- Consider a PAS clinic

2- Standardize your Antenatal Preparation

- Assemble skilled multidisciplinary team
- Best pelvic surgeons
- Skilled nursing teams
- Experienced anesthesiology
- Intervention radiology
- Urology
- Blood bank (massive transfusion)
- Skilled OR team
- Critical care
3- Plan Cesarean Delivery at 34-37 Weeks

- Large number of patients with PAS report hemorrhage after 35 weeks

Planned Delivery
- Associated with shorter OR times
- Lower frequency of transfusions
- Lower ICU admission

4- Optimize Surgical Approach

- Consider midline skin incision
- Ultrasound mapping of placental implantation site intraoperatively
- Classical uterine incision above placenta
- Cesarean hysterectomy with placenta left in situ
4- Optimize Surgical Approach

- Uterine stapler (if decision for hysterectomy)
- Abdominal retractors: Bookwalter retractor
- Appropriate size clamps: Masterson clamps
- Ligasure impact coagulator
- Bipolar cautery forceps
- Appropriate sutures
- Cell saver suction

4- Optimize Surgical Approach

- Massive blood loss and Hypovolemic shock:
 - Start transfusion early and stay ahead of bleeding
 - Rapid restoration of effective intravascular volume
 - Cell saver
 - Avoid state of DIC
 - Avoid acidosis
 - Factor VII & Tranexamic acid
 - Recommend a 1:1 ratio of RBC to FFP

4- Optimize Surgical Approach

- Hypothermia
 - Provide warm covering for patient (bear Hug)
 - Warm irrigation saline
Electrolyte abnormalities
- Major risk for arrhythmias
- Check regularly and correct intraoperatively (K)

4- Optimize Surgical Approach

- Staged surgical approach (intervention radiology)
- Consider conservative management for massive percreta – could be life saving if unprepared
Staged Surgical Approach

<table>
<thead>
<tr>
<th>Table</th>
<th>Staged Approach</th>
<th>Expectant Treatment</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>38.5 ± 4.01</td>
<td>36.0 ± 4.01</td>
<td>.35</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25.1 ± 4.0</td>
<td>16.1 ± 4.0</td>
<td>.00</td>
</tr>
<tr>
<td>Mode of delivery, %</td>
<td>35.8 ± 4.0 (36-40)</td>
<td>38.5 ± 4.0 (36-40)</td>
<td>.94</td>
</tr>
<tr>
<td>Blood loss, ml</td>
<td>511 ± 437 (295-939)</td>
<td>4517 ± 711 (2500-11,100)</td>
<td>.0001</td>
</tr>
<tr>
<td>Maternal blood loss, %</td>
<td>71.1 ± 30.0 (55-95)</td>
<td>7.2 ± 1.4 (5-85)</td>
<td>.003</td>
</tr>
</tbody>
</table>

- Successful conservative management: 131 (78%)
- Spontaneous placental resorption: 87 (75%)
- Severe maternal morbidity: 10 (6%)

5- Optimize Postoperative Care

- ICU admissions with critical care
- Monitor bleeding in first 24 hours
- Monitor electrolytes and lung function
- Role for intervention radiology if stable
Placenta Accreta Spectrum
Case Presentation:
How Complicated Can It Gets!

Patient History

• 31 year old
• G2 P1001
• One prior CS for failure to progress
• Prenatal care with Maternal-Fetal Medicine
• History of kidney stones
• Prenatal care started in first trimester

12 Weeks
Patient referred to our PAS Clinic

- Counseling
- Anesthesia consult
- Intervention radiology consult
- Coordination for cesarean hysterectomy
Patient History

• Presented to Labor & Delivery unit with abdominal pain & early labor at 33 weeks of gestation
• Decision to proceed with cesarean delivery
• Discussed conservative management
• Preparation for possible hysterectomy
Intraop Findings
• Following delivery of baby, heavy bleeding was noted from the cervix
• Conservative management was not an option
• Plan to proceed with hysterectomy
• Activated massive transfusion protocol

Intraop Findings
• Following delivery of baby –
 • Drop in BP
 • Maternal tachycardia

Attributed to bleeding
Intraoperative Findings

• Intraop, patient noted to go into massive pulmonary edema and right heart failure
• Massive amount of pleural fluid pouring from ET Tube

Intraoperative Findings

• Transesophageal echo notes right heart failure
• Normal electrolytes
• Patient goes into DIC with significant pelvic oozing
Intraoperative Findings

- Suspected Diagnosis:
 - TRALI (Transfusion related acute lung injury) or
 - Amniotic Fluid Embolism (BP drop immediately after delivery of baby)

Intraoperative Management

- Blue towel closure
- Pack abdomen
- Keep fascia open
- Place drains (vacuum)
- Cover with plastic adhesive
Given Severity of Lund Disease and Right Heart Failure
Only Option to Consider is ECMO

Intraoperative Management
• ECMO (extra-corporeal membrane oxygenation)
Postoperative care

• Cardiac ICU admission
• ECMO for 48 hours
• Back to OR for abdomen closure in 48 hours
• Nephrostomy for left renal drainage
• Lithotripsy day 4 for ureteral stone
• Hospital discharge day 7 postop
• Nephrostomy tube removed 2 weeks later

Patient’s consent obtained

4 weeks postoperative

Take Home Message

• Know the maternal risk factors for PAS
• Know the significance and limitations of Ultrasound markers in PAS
• Be conservative, when in doubt—call accreta
• Consider delivery at 34-37 weeks for accreta
• Multidisciplinary approach to care
• Aggressive transfusion & resuscitation
• Plan – Plan – Plan